Estimation of Noise Magnitude for Speech Denoising Using Minima-Controlled-Recursive-Averaging Algorithm Adapted by Harmonic Properties
نویسندگان
چکیده
The accuracy of noise estimation is important for the performance of a speech denoising system. Most noise estimators suffer from either overestimation or underestimation on the noise level. An overestimate on noise magnitude will cause serious speech distortion for speech denoising. Conversely, a great quantity of residual noise will occur when the noise magnitude is underestimated. Accurately estimating noise magnitude is important for speech denoising. This study proposes employing variable segment length for noise tracking and variable thresholds for the determination of speech presence probability, resulting in the performance improvement for a minima-controlled-recursive-averaging (MCRA) algorithm in noise estimation. Initially, the fundamental frequency was estimated to determine whether a frame is a vowel. In the case of a vowel frame, the increment of segment lengths and the decrement of threshold for speech presence were performed which resulted in underestimating the level of noise magnitude. Accordingly, the speech distortion is reduced in denoised speech. On the contrary, the segment length decreases rapidly in noise-dominant regions. This enables the noise estimate to update quickly and the noise variation to track well, yielding interference noise being removed effectively through the process of speech denoising. Experimental results show that the proposed approach has been effective in improving the performance of the MCRA algorithm by preserving the weak vowels and consonants. The denoising performance is therefore improved.
منابع مشابه
Noise spectrum estimation in adverse environments: improved minima controlled recursive averaging
Noise spectrum estimation is a fundamental component of speech enhancement and speech recognition systems. In this paper, we present an improved minima controlled recursive averaging (IMCRA) approach, for noise estimation in adverse environments involving nonstationary noise, weak speech components, and low input signal-to-noise ratio (SNR). The noise estimate is obtained by averaging past spec...
متن کاملRobust Noise Estimation Applied to Different Speech Estimators
In this paper we present a robust noise estimation for speech enhancement algorithms. The robust noise estimation based on a modified minima controlled recursive averaging noise estimator was applied to different speech estimators. The investigated speech estimators were spectral substraction (SS), log spectral amplitude speech estimator (LSA) and optimally modified log spectral amplitude estim...
متن کاملPii: S0165-1684(01)00128-1
In this paper, we present an optimally-modi#ed log-spectral amplitude (OM-LSA) speech estimator and a minima controlled recursive averaging (MCRA) noise estimation approach for robust speech enhancement. The spectral gain function, which minimizes the mean-square error of the log-spectra, is obtained as a weighted geometric mean of the hypothetical gains associated with the speech presence unce...
متن کاملA Weighted Recursive Averaging Approach for Noise Spectrum Estimation
In the paper, we present a new noise spectrum estimation algorithm which is simple and effective for non-stationary background noise environments. The new proposed algorithm continuously updates the estimated noise by weighted noisy speech with a constant smoothing factor, the weighting factor is adjusted by an estimated signal-tonoise ratio (SNR), and the SNR is controlled by the local energy ...
متن کاملSpeech enhancement with weighted denoising auto-encoder
A novel speech enhancement method with Weighted Denoising Auto-encoder (WDA) is proposed in this paper. A weighted reconstruction loss function is introduced to the conventional Denoising Auto-encoder (DA), and makes it suitable for the task of speech enhancement. First, the proposed WDA is used to model the relationship between the noisy and clean power spectrums of speech signal. Then, the es...
متن کامل